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Scalar wave diffraction from zero-range scatterers
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The zero-range approximation for wave scattering is popularized. The general idea of
the approximation is outlined and the theory is applied to solve an illustrative example:
diffraction on a system of four identical scatterers forming a Td-symmetry structure. The
group theoretical methods are used to decompose a scattered wave into four partial waves
adequate to the symmetry group of the target. Concepts of partial scattering amplitudes,
associated phase shifts and partial cross sections for the nonspherical target considered are
introduced and utilized. It is shown that under some conditions a phenomenon of resonant
scattering may occur.

1. Introduction

Problems of wave scattering from discrete systems of obstacles are frequently
considered in applications of the theory of wave motion. They are met, for instance,
in atomic, molecular, chemical, condensed matter and nuclear science as well as in
acoustics, electromagnetic theory and geophysics. A solution to any particular problem
depends on physical nature of a wave and targets, on laws of their interaction, on
size and shape of individual obstacles, their relative localization and on wave length.
Such a variety of factors which should be taken into account causes that in most
cases only numerical solutions are available. Obviously, analytical solutions, even
approximate, always remain of considerable interest because of their compactness
and a possibility they offer to discuss the dependency of scattering observables on
parameters characterizing a system.

An interesting and useful approximate analytical method of solving the problem of
wave diffraction on a system of targets in the extreme case when spatial dimensions of
individual scatterers are much lesser than the wave length was developed by nuclear
physicists [2]. The method, known as the zero-range approximation, bases on the
assumption that scatterers may be considered to be point-like and that their interaction
with the wave may be modeled by a set of limiting conditions obeyed by a solution
of a wave equation at points where these zero-range scatterers are situated. Until
now the approximation has found numerous applications in quantum theory [2,5–
9,12 and references therein]. It is a purpose of this paper to popularize the zero-
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range approximation by showing its ability to provide analytical solutions to diffraction
problems of interest for chemists and molecular physicists.

The rest of the work is divided into two sections. Section 2 contains a brief
outline of the theory of wave scattering from an arbitrary system of zero-range targets.
In section 3 wave diffraction from a system of four identical zero-range scatterers
located in vertices of a fictitious regular tetrahedron is considered as an example of the
applicability of the zero-range approximation. A scattered wave is decomposed into
partial waves adequate to the Td-symmetry point group to which the target belongs.
Concepts of partial scattering amplitudes, associated phase shifts and partial cross
sections for such a nonspherical scatterer are then introduced and applied. The section
concludes with showing that under some conditions wave scattering from the obstacle
under study may be of a resonant character.

2. Diffraction from zero-range scatterers: an outline of the theory

Consider situation when a scalar plane wave of the wave vector ki impinges on
a system consisting of N fixed, in general non-identical, zero-range non-absorbing
spherically symmetric obstacles located at points rn, n = 1, . . . ,N . Everywhere,
except the points where the scatterers are situated, the time-independent wave equation
is the Helmholtz equation[

∇2 + k2]Ψ(ki, r) = 0 (r 6= rn,n = 1, . . . ,N ), (1)

where k = |ki|. Its particular solution, describing the process under consideration, has
the form

Ψ(ki, r) = eiki·r + Φ(ki, r), (2)

in which the first and the second term on the right represents the incident and the
scattered wave, respectively. It is assumed that the scattered wave Φ(ki, r) is a super-
position of N spherically symmetric waves outgoing from individual targets

Φ(ki, r) =
N∑
n=1

fn(ki)φn(r), (3)

where

φn(r) =
eik|r−rn|

|r − rn|
(n = 1, . . . ,N ), (4)

while fn(ki) are the superposition coefficients which are to be found. Since the targets
are point-like, their interaction with the incident wave, resulting in a formation of the
scattered wave, must be given in the form of a set of limiting conditions imposed on
the solution of equation (1) at the points where the targets are situated. The particular
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form of these conditions follows from the assumption that the obstacles do not absorb
the wave. This means that the flux of the vector

j = Im
[
Ψ∗(ki, r)∇Ψ(ki, r)

]
(5)

through an infinitesimal spherical surface centered at an arbitrary scattered vanishes

lim
r→rn

∫
Sn

dSn
r − rn
|r − rn|

· Im
[
Ψ∗(ki, r)∇Ψ(ki, r)

]
= 0 (n = 1, . . . ,N ). (6)

(The vector (r−rn)/|r−rn| is the unit vector normal to the sphere Sn at the point r.)
It may be verified by direct substitution that the constraint (6) is satisfied if the function
Ψ(ki, r) obeys the conditions

lim
r→rn

[
1 + κn|r − rn|+ (r − rn) ·∇

]
Ψ(ki, r) = 0 (n = 1, . . . ,N ), (7)

where κn is a real parameter characterizing the nth scatterer. In general, one might
consider the possibility that the parameters κn, n = 1, . . . ,N , are k-dependent but in
what follows we shall restrict our analysis to the simplest case when they are constant.

The conditions (7) enable one to find the superposition coefficients in the outgoing
wave (3). Indeed, substitution of equations (2) and (3) into equation (7) yields the
system of algebraic equations for fn(ki)

(ik + κn)fn(ki) +
N∑
m=1

(m6=n)

fm(ki)φm(rn) = −eiki·rn , (8)

which, at least in principle, may be solved for an arbitrary geometry of the scattering
centers. The solution facilitates, however, whenever the target system is invariant
under some group of symmetry transformations. This will be illustrated in the next
section.

Once the coefficients fn(ki) have been found, the scattering amplitude F(ki,kf ),
defined by

Φ(ki, r)
r→∞−→ F(ki,kf )

eikr

r
(9)

with kf = kr/r, may be determined. Combining the obvious asymptotic relation

φn(r)
r→∞−→ e−ikf ·rn eikr

r
(n = 1, . . . ,N ) (10)

with equations (3) and (9), one obtains

F(ki,kf ) =
N∑
n=1

fn(ki)e
−ikf ·rn. (11)
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Given the amplitude F(ki,kf ), other quantities characterizing the scattering process,
such as the differential cross section for the transition ki → kf

σ(ki,kf ) =
∣∣F(ki,kf )

∣∣2 (12)

and the total (or integral) scattering cross section averaged over all directions of inci-
dence

σ(k) =
1

4π

∫
4π

d2k̂i

∫
4π

d2k̂f
∣∣F(ki,kf )

∣∣2, (13)

may be found. It is to be noticed that the total cross section σ(k) may be also obtained
from the scattering amplitude via the optical theorem, which states that

σ(k) =
1
k

∫
4π

d2k̂i ImF(ki,ki). (14)

3. Diffraction from an X4 (Td-symmetry) structure

3.1. Theory

As an example illustrating applications of the zero-range approximation to prob-
lems of interest for chemists and molecular physicists in this section we consider
scattering of a plane wave from a system of four identical zero-range scatterers fixed
at the points

r1 = (+a, +a, +a), r2 = (−a,−a, +a), (15a)

r3 = (+a,−a,−a), r4 = (−a, +a,−a), (15b)

respectively (see figure 1). The distance between any two scatterers is

|rn − rm| = b ≡ 2
√

2a (n,m = 1, 2, 3, 4, n 6= m). (16)

It is easy to observe that the scatterers are situated in vertices of a fictitious regular
tetrahedron and therefore the target belongs to the Td-symmetry group. We shall make
extensive use of this fact in the following considerations.

In accord with equation (3), the scattered wave is a superposition of waves
emerging from individual centers

Φ(ki, r) =
4∑

n=1

fn(ki)φn(r). (17)

Using the group theoretical methods (see any textbook on quantum chemistry or mole-
cular quantum mechanics, e.g., [1,10]), this wave may be decomposed into partial
waves forming bases for the irreducible representations of the symmetry group to
which the target belongs. It is found that the function (17) gives rise to one a1 and
three t2 partial waves

Φ(ki, r) = Φa1 (ki, r) + Φt2,x(ki, r) + Φt2,y(ki, r) + Φt2,z(ki, r), (18)
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Figure 1. The system of four identical zero-range scatterers forming a Td-symmetry structure. The
scatterers, depicted here of necessity using bullets, are point-like.

where

Φa1 (ki, r) =
1
4

[
f1(ki) + f2(ki) + f3(ki) + f4(ki)

]
×
[
φ1(r) + φ2(r) + φ3(r) + φ4(r)

]
, (19a)

Φt2,x(ki, r) =
1
4

[
f1(ki)− f2(ki) + f3(ki)− f4(ki)

]
×
[
φ1(r)− φ2(r) + φ3(r)− φ4(r)

]
, (19b)

Φt2,y(ki, r) =
1
4

[
f1(ki)− f2(ki)− f3(ki) + f4(ki)

]
×
[
φ1(r)− φ2(r)− φ3(r) + φ4(r)

]
, (19c)

Φt2,z(ki, r) =
1
4

[
f1(ki) + f2(ki)− f3(ki)− f4(ki)

]
×
[
φ1(r) + φ2(r)− φ3(r)− φ4(r)

]
. (19d)

The coefficients fn(ki) may be found from the system of equations (8). In the
particular case of the structure discussed in the present section, this system has the
form 

ik + κ eikb/b eikb/b eikb/b
eikb/b ik + κ eikb/b eikb/b
eikb/b eikb/b ik + κ eikb/b
eikb/b eikb/b eikb/b ik + κ



f1(ki)
f2(ki)
f3(ki)
f4(ki)

 =


−eiki·r1

−eiki·r2

−eiki·r3

−eiki·r4

 . (20)

Solving this system directly for fn(ki) is not necessary. Indeed, what we really need
are the specific linear combinations of the coefficients which appear in equations (19a)
to (19d). Adding and subtracting equations from the system (20), one readily finds
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that

f1(ki) + f2(ki) + f3(ki) + f4(ki)

= −b
√

16π[1 + 3(sin kb)/kb]
(κb+ 3 cos kb) + i(kb+ 3 sin kb)

Ya1(ki), (21a)

f1(ki)− f2(ki) + f3(ki)− f4(ki)

= −ib

√
16π[1 − (sin kb)/kb]

(κb− cos kb) + i(kb− sin kb)
Yt2,x(ki), (21b)

f1(ki)− f2(ki)− f3(ki) + f4(ki)

= −ib

√
16π[1 − (sin kb)/kb]

(κb− cos kb) + i(kb− sin kb)
Yt2,y(ki), (21c)

f1(ki) + f2(ki)− f3(ki)− f4(ki)

= −ib

√
16π[1 − (sin kb)/kb]

(κb− cos kb) + i(kb− sin kb)
Yt2,z(ki), (21d)

where

Ya1 (k) =
1√

16π[1 + 3(sin kb)/kb]

[
eik·r1 + eik·r2 + eik·r3 + eik·r4

]
, (22a)

Yt2,x(k) =
−i√

16π[1 − (sin kb)/kb]

[
eik·r1 − eik·r2 + eik·r3 − eik·r4

]
, (22b)

Yt2,y(k) =
−i√

16π[1 − (sin kb)/kb]

[
eik·r1 − eik·r2 − eik·r3 + eik·r4

]
, (22c)

Yt2,z(k) =
−i√

16π[1 − (sin kb)/kb]

[
eik·r1 + eik·r2 − eik·r3 − eik·r4

]
. (22d)

Let us look somewhat closer at properties of the functions (22a) to (22d) which in
the description of scattering from the Td-symmetry obstacle considered here play the
same role as the spherical harmonics Yl,ml(k̂) do in an analysis of scattering from a
spherically symmetric target. Firstly, one notices that the functions are normalized to
unity in the sense of ∫

4π
d2k̂Y∗a1

(k)Ya1 (k) = 1, (23a)∫
4π

d2k̂Y∗t2,α(k)Yt2,α(k) = 1 (α = x, y, z). (23b)

Secondly, it may be verified by direct integration that the functions are mutually or-
thogonal ∫

4π
d2k̂Y∗a1

(k)Yt2,α(k) = 0 (α = x, y, z), (24a)∫
4π

d2k̂Y∗t2,α(k)Yt2,α′(k) = 0 (α,α′ = x, y, z, α 6= α′). (24b)
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Moreover, in the limiting case when the distance between individual scatterers is very
small compared to the wave length, kb � 1, the function Ya1(k) becomes the l = 0
spherical harmonic

Ya1 (k)
kb→0−→ Y0,0

(
k̂
)

=
1√
4π

, (25a)

while the functions Yt2,α(k), α = x, y, z, tend to simple linear combinations of the
l = 1 spherical harmonics

Yt2,x(k)
kb→0−→ − 1√

2
Y1,+1

(
k̂
)

+
1√
2
Y1,−1

(
k̂
)

=

√
3

4π
k̂ · x̂, (25b)

Yt2,y(k)
kb→0−→ i√

2
Y1,+1

(
k̂
)

+
i√
2
Y1,−1

(
k̂
)

=

√
3

4π
k̂ · ŷ, (25c)

Yt2,z(k)
kb→0−→ Y1,0

(
k̂
)

=

√
3

4π
k̂ · ẑ, (25d)

where x̂, ŷ, ẑ are the unit vectors in the direction of the OX, OY and OZ Cartesian
coordinate axes, respectively. (The definition of the spherical harmonics used in the
present work follows the Condon–Shortley phase convention [3,4].)

We define the partial scattering amplitudes Fa1 (ki,kf ) and Ft2,α(ki,kf ), α =
x, y, z, through the asymptotic relations

Φa1 (ki, r)
r→∞−→ Fa1 (ki,kf )

eikr

r
, (26a)

Φt2,α(ki, r)
r→∞−→ Ft2,α(ki,kf )

eikr

r
(α = x, y, z). (26b)

Then, it is the consequence of equations (9), (18), (26a) and (26b) that the total
scattering amplitude F(ki,kf ) may be decomposed in the following way:

F(ki,kf ) = Fa1 (ki,kf ) +
∑

α=x,y,z

Ft2,α(ki,kf ). (27)

From equations (10), (19a)–(19d) and (21a)–(21d) one infers that angular dependences
of the partial scattering amplitudes may be factored out. One has

Fa1 (ki,kf ) = 4πFa1 (k)Y∗a1
(kf )Ya1(ki), (28a)

Ft2,α(ki,kf ) = 4πFt2 (k)Y∗t2,α(kf )Yt2,α(ki) (α = x, y, z), (28b)

where the scalar partial amplitudes Fa1 (k) and Ft2 (k) are

Fa1 (k) =−1
k

kb+ 3 sin kb
(κb+ 3 cos kb) + i(kb+ 3 sin kb)

, (29a)

Ft2 (k) =−1
k

kb− sin kb
(κb− cos kb) + i(kb− sin kb)

. (29b)
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The latter amplitudes may be used to define the scattering phase shifts δa1 (k) and δt2 (k)
through the relations

Fa1 (k) =
1
k

1
cot δa1 (k)− i

, Ft2 (k) =
1
k

1
cot δt2 (k)− i

, (30)

hence, it follows that

cot δa1 (k) = −κb+ 3 cos kb
kb+ 3 sin kb

, cot δt2 (k) = −κb− cos kb
kb− sin kb

. (31)

Once the scattering amplitude has been found, the integral cross section may be found
either from equation (13) or from equation (14). In either case one readily obtains

σ(k) = σa1 (k) + σt2(k) = σa1 (k) +
∑

α=x,y,z

σt2,α(k) (32)

with partial cross sections

σa1(k) =
4π
k2 sin2 δa1 (k) =

4π
k2

(kb+ 3 sin kb)2

(κb+ 3 cos kb)2 + (kb+ 3 sin kb)2 , (33a)

σt2,α(k) =
4π
k2 sin2 δt2 (k) =

4π
k2

(kb− sin kb)2

(κb− cos kb)2 + (kb− sin kb)2 (α = x, y, z). (33b)

Notice that the three t2 partial waves contribute equally to the total cross section.

3.2. Discussion

We begin the discussion of the results of section 3.1 with analyzing the phase
shifts δa1 (k) and δt2 (k). Their values, extracted from equation (31), are plotted in
figure 2 against kb for six representative values of the product κb. Since equation (31)
defines the phase shifts modulo π only, we have normalized δa1 (k) and δt2 (k) so that
they vanish at kb = 0. It is seen that both phase shifts show an oscillatory dependence
on kb. The phase δa1 (k) goes through −π/2 at such values of kb, denoted henceforth
as ka1b, that

cos ka1b = −1
3
κb, −3 < κb < 3, (34)

while the phase δt2 (k) crosses +π/2 at kb = kt2b such that

cos kt2b = κb, −1 < κb < 1. (35)

It is known from the general theory of wave scattering [11] that resonant features
occur in a partial cross section around such wave numbers for which the corresponding
phase shift goes across an odd multiple of π/2 and, simultaneously, the partial wave
retardation stretch, defined by Wigner [13] as

∆L = 2
dδ(k)

dk
, (36)
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Figure 2. The phase shifts δa1 (k) (the solid line) and δt2 (k) (the dotted line) plotted versus kb for six
representative values of the parameter κb. The horizontal dashed lines have been drawn at ±π/2.
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exceeds a characteristic dimension L of the region where a wave interacts with a target.
Applying this result to the present case we see that resonances in the a1 and t2 partial
waves will occur around the roots of equations (34) and (35), respectively, provided
that

2
b

dδa1 (k)
dk

∣∣∣∣
k=ka1

> 1 and
2
b

dδt2 (k)
dk

∣∣∣∣
k=kt2

> 1, (37)

respectively. By evaluating the derivatives, the conditions (37) are transformed to the
forms

−2
3 sin ka1b

ka1b+ 3 sin ka1b
> 1 and 2

sin kt2b
kt2b− sin kt2b

> 1, (38)

respectively. The inequalities (38) may be solved either graphically or numerically. It
is found that the first of them is satisfied for

ξ(1)
a1
< ka1b < ξ(2)

a1
, (39)

where

ξ(1)
a1
' 3.547, ξ(2)

a1
' 5.610 (40)

are two lowest positive roots of

sin ξ
ξ

= −1
9

, (41)

while the second is satisfied for

0 < kt2b < ξ(1)
t2

, (42)

where

ξ(1)
t2
' 2.279 (43)

is the lowest positive root of

sin ξ
ξ

=
1
3
. (44)

On combining these results with equations (34) and (35), one concludes that a reso-
nance, located around

ka1b = π + arccos
1
3
κb, (45)

arises in the partial wave a1 for

−2.346 < κb < 2.757, (46)

while a resonance in the partial wave t2, located around

kt2b = arccos κb, (47)
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Figure 3. The partial cross sections σa1 (k) (the solid line) and σt2 (k) (the dotted line) plotted versus kb
for the same values of the parameter κb as used in figure 2.
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occurs for

−0.650 < κb < 1. (48)

In equations (45) and (47) the principal branch of the arc cosine is used.
We now pass on to analysis of the partial cross sections σa1 (k) and σt2(k) plotted

against kb in figure 3. The resonance predicted in the δt2 (k) phase shift at low values
of kb manifests itself as a pronounced peak in the corresponding partial cross section
σt2(k). As the product κb tends towards the unity from below, the peak becomes
higher, narrower and its position shifts towards very small values of kb. For κb > 1
the resonant peak disappears and the observed maximum is of nonresonant origin. The
limiting case κb = 1 is exceptional since only in this case the partial cross section
σt2(k) does not vanish for k = 0; instead, it takes there the value 4πb2/3. The shape
of the curve σa1(k) differs distinctly from σt2 (k) and the a1-resonance is seen only as
a low broad hump in σa1(k) located as predicted by equation (45).
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